metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

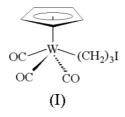
Holger B. Friedrich, Martin O. Onani and Melanie Rademeyer*

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban 4041, South Africa

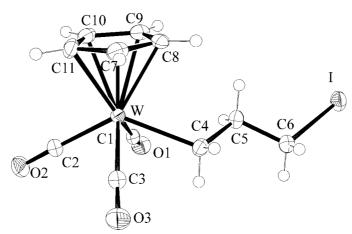
Correspondence e-mail: rademeyerm@ukzn.ac.za

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.032 wR factor = 0.078 Data-to-parameter ratio = 27.1


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tricarbonyl(η^5 -cyclopentadienyl)(3-iodopropyl)tungsten(II)


In the title compound, $[W(C_5H_5)(C_3H_6I)(CO)_3]$, the W atom is coordinated by a cyclopentadienyl ligand, three carbonyl ligands and an iodoalkyl chain in a distorted square-pyramidal arrangement. In the crystal structure, the molecules pack with the iodoalkyl chains in non-interdigitated layers.

Comment

This structure determination was undertaken as part of our ongoing study of halogenoalkyl transition metal compounds (Friedrich *et al.*, 2004). Reported structures of halogenoalkyl transition metal complexes are rare and, to our knowledge, only four structures are known where the halogenoalkyl group has a chain length exceeding one C atom (Friedrich *et al.*, 2004).

The title compound, $CpW(CO)_3(n-C_3H_6I)$, (I) ($Cp = \eta^5-C_5H_5$), is, to our knowledge, the first crystal structure reported for a tungsten iodopropyl molecule. The structures of the related tungsten halogenoalkyl compounds, $CpW(CO)_3-(C_5H_{10}I)$, (II), and $CpW(CO)_3(C_3H_6Br)$, (III), have been reported previously (Friedrich *et al.*, 2001).

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Received 22 November 2004 Accepted 7 December 2004 Online 18 December 2004

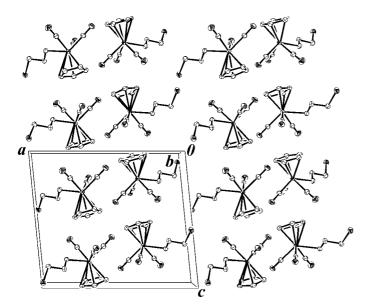


Figure 2 A packing diagram for (I), viewed down the b axis. H atoms have been omitted.

In (I), the W atom is coordinated in a distorted squarepyramidal fashion by three carbonyl ligands, an η^5 -cyclopentadienyl ligand (assuming a single bond to the centroid) and a C-bonded iodoalkyl chain (Table 1). The molecular geometry and numbering scheme are illustrated in Fig. 1.

The five W-C bonds to the cyclopentadienyl C atoms range from 2.313 (5) Å to 2.382 (5) Å. In the halogenoalkyl chain, the C atoms are in the energetically favoured all-trans conformation, and are almost coplanar with the atoms W, O3 and C3 (r.m.s deviation 0.0132 Å). The I atom, however, is 0.278 (1) Å out of this plane. The C–I bond length of 2.169 (5) Å is similar to the value of 2.121 (10) Å observed for (II), and the W–C4 bond of 2.329 (5) Å compares favourably with values of 2.348 (10) Å reported for (II), and 2.347 (15) Å and 2.336 (14) Å reported for (III).

The molecular packing in (I), as viewed down the b axis, is shown in Fig. 2. In the crystal structure, the molecules assemble into layers such that the non-interdigitated haloalkyl chains face each other on one side of the layer, with the rest of each molecule on the other. The plane through the C atoms of the haloalkyl chain is tilted by 66.6 (4) $^{\circ}$ relative to the (100) plane, and the cyclopentadienyl plane (r.m.s. deviation 0.0049 Å) is tilted by 80.82 $(14)^{\circ}$ relative to this (100) plane. A short contact of 3.6028 (13) Å is observed between neighbouring I atoms.

The structure of compound (II), where the iodopropyl chain in (I) is substituted by a longer iodopentyl chain, is different from the structures of the iodopropyl-containing compounds. In this material, a layered molecular packing is not observed, and pairs of molecules pack with interdigitated iodopentyl chains.

Experimental

The title compound was prepared according to the procedure of Friedrich et al., 2001) and crystals were grown by slow evaporation of a mixture of dichloromethane and hexane (1:4) at 278 K.

$D_x = 2.602 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation Cell parameters from 624 reflections $\theta = 2.2-31.4^{\circ}$ $\mu = 11.42 \text{ mm}^{-1}$ T = 293 (2) K Block, yellow $0.20 \times 0.20 \times 0.10 \text{ mm}$
3934 independent reflection 3333 reflections with $I > 2o$ $R_{int} = 0.038$ $\theta_{max} = 31.9^{\circ}$ $h = -21 \rightarrow 13$ $k = -10 \rightarrow 10$ $I = -18 \rightarrow 18$

Refinement

ons $\sigma(I)$ $l = -18 \rightarrow 18$

 $w = 1/[\sigma^2(F_o^2) + (0.045P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 2.13 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -2.58 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

Table 1 Selected bond lengths (Å).

W-C1	1.983 (5)	W-C8	2.381 (5)
W-C2	1.987 (5)	W-C9	2.339 (5)
W-C3	1.987 (5)	W-C10	2.313 (5)
W-C4	2.329 (5)	W-C11	2.320 (5)
W-C7	2.382 (5)		()

During this study, it was established that the structure of (III), $CpW(CO)_3(C_3H_6Br)$ (Friedrich *et al.*, 2001), was reported in a space group of too low a symmetry (triclinic, space group $P\overline{1}$), and is actually monoclinic and isostructural with the title compound. Substitution of the Br atom in (III) by the larger I atom in (I) results in a slight expansion of two of the unit-cell parameters and a slight contraction of the third. All H atoms were placed in calculated positions, with C-H distances of 0.96–0.97 Å and $U_{iso}(H) =$ $1.5U_{eq}(C)$, and were refined using a riding model. The maximum and minimum electron-density peaks are 0.72 Å and 0.78 Å, respectively, from W at (0.3173, 0.7293, 0.6985) and (0.2722, 0.6244, 0.6624).

Data collection: CrysAlisCCD (Oxford Diffraction, 2003); cell refinement: CrysAlisCCD; data reduction: CrysAlisRED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

metal-organic papers

We thank the NRF (South Africa) and DAAD (Germany) for support, and the University of Natal for a post-doctoral fellowship (MOO). We also thank Ms Z. Mabuza for assistance in the laboratory.

References

Blessing, R. H. (1995). Acta Cryst. A**51**, 33–38. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Friedrich, H. B., Onani, M. O., Munro, O. Q. (2001). J. Organomet. Chem. 633, 39–50.
- Friedrich, H. B., Onani, M. O., Rademeyer, M. (2004). Acta Cryst. E60, m551m553.
- Oxford Diffraction (2003). CrysAlisCCD and CrysAlisRED. Versions 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.